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It all started in 2009.
We just wanted to measure the loss tangent!!!! 
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DesignCon2010, Santa Clara, CA, February 1-4, 2010

Pressed stack loss measurement 

methods:

Rely on a combination of models and

measurements to extract losses. In 

particular when conductor/dielectric 

loss separation is required



A Simple Test Case

By adjusting one of 
the parameters a 
perfect match can be 
obtained, even for 
very different loss
tangent profiles 5 10 15 20 25 30
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As a minimum, this 
begs two questions:
1. How “correct” 
are these models? 
2. Good correlation 
against what?
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Is It possible to 
DIRECTLY

measure copper and 
dielectric losses on a 

pressed stack?

4

pressed stack?

(Without pre-assuming a model)



Theory
• Is it theoretically possible?

• If we were able to extract RLGC from measurement, separation of conductive and 
dielectric losses is automatic!!!!!!
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We are still assuming the t-line
works in a TEM or Quasi-TEM mode.

The fundamental parameters we need to 
determine RLGC are: Propagation Constant 
and Characteristic Impedance

)2/( cgdf ∗∗∗= ωπ

Loss tangent



Proof of Concept (Simulated Test-Case-1)

Generate 
Transmission 

line
RLGC model

Convert to 
S-parameters

Extract back
RLGC

CMP

10
8

10
9

10
10

50

51

52

Freq[Hz]

R
e

a
l[O

h
m

s
]

10
8

10
9

10
10

-6

-4

-2

Im
a

g
[O

h
m

s
]

10
8

10
9

10
10

0.05

0.1

0.15

0.2

Freq[Hz]

A
tt
[N

e
p

e
r]

10
8

10
9

10
10

1.65

1.7

1.75

1.8

x 10
-10

P
ro

p
D

e
la

y
[s

e
c
]

8

10
 

9

9.2

x 10
-9

R L

Zc

6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
10

-2

-1.5

-1

-0.5

0

Freq[Hz]

d
B

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
10

-80

-70

-60

-50

-40

Insertion-Loss

Return-Loss

0.5 1 1.5 2

x 10
10

2

4

6

8

 

GENERATED

CONVERTED

10
8

10
10

8.4

8.6

8.8

9

0.5 1 1.5 2

x 10
10

1

2

3

4

x 10
-3

10
8

10
10

3.35

3.4

3.45

x 10
-12

R L

G C



Interesting Applications on Simulated 
Data

• Explore the equivalent “uniform” RLGC parameters from a non-
uniform 3-D structure.

• Lossless material with copper traces and perpendicular blades

• Does G and R 
change for
different blade
heights ?

RG

7

heights ?

• This methodology
can help us explore
the inner working
of structures



Let’s try the Process on Measurements

• Any type of discontinuities have to be minimized

• Wafer probes: GSG-225um

• SOLT calibration (to the TIPS of the wafer probes)

• Very small lead-in trace before the “uniform” piece of transmission line

• Bottom and top GND plane connected to minimize current path redistribution 

• Four measurements per set were done, all on the SAME transmission line
(long, long-reverse, and after cutting the same line we measured short and short-

8

(long, long-reverse, and after cutting the same line we measured short and short-
reverse)



S-Parameter Measurements

• Two samples
shown (RTF and VLP),
at two lengths
(short, long)

• Very good insertion 
loss profile
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• Reasonable return loss 
<-20dB up to 20GHz
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SO HOW DOES Zc LOOK!!!

10
10

44

46

48

50

52

54

Real part of ZC [Ohms]

 

 

Short

Long

10
7

10
8

10
9

10
10

45

50

55

60

65

Real part of ZC [Ohms]

 

 

Short

Long

S-par

ABCD

10

½ wave resonance (end discontinuities) 

10
Freq[Hz]

10 10 10 10
Freq[Hz]

Upslope trend, maybe inductive discontinuity

In general pretty good overall baseline value, and correct trend

• Clearly, in contrast with simulation data, even very clean 
measurements have other issues. Other effects, such as error-terms, 
need to be considered if we ever hope to extract Zc cleanly.
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Characteristic Impedance 
Extraction Methods

• Direct Inversion Method (shown previously)

• Impedance Renormalization

• Error Model Calculation
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• Maximum Identification

• Frequency Adjustment

• Extraction of propagation constant has been shown in previous publications. In this work we’ll 
focus primarily on Characteristic Impedance (Zc).



Characteristic Impedance by 
Renormalization Theory

DUT
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• Reflections (at the load) can be modified by 
mathematically changing “Z”. This is called
impedance renormalization

• If Zc were known and used as the reference
impedance, the reflection would be zero

• The method consist of doing a frequency dependent complex 
impedance renormalization to minimize the reflection on the curve
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• We see that the improvement is minimal and likely due to the 
averaging of the algorithm.

• Two independent methods, similar results.

• Are we only measuring the transmission line?

Real part of ZC [Ohms]
 15

Imaginary part of ZC [Ohms]
 

Characteristic Impedance by 
Renormalization Results
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Characteristic Impedance by Error 
Model

E1 CHL E2

Error
matrix 1

Error
matrix 2

Real DUT to be
determined

Measured DUT

Error terms could be:

- End physical discontinuities

- Measurement repeatability

- Instrument / Calibration  errors

- Instrument noise floor

- Others ?
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• By measuring two lines (long and short), 
the complex propagation constant can 
be easily extracted 

• This is not sufficient to get Zc, 
something else is needed?



Error Model Validation By Simulations and 
Measurements Results

Simulated Data
Left: Smaller discontinuity: 

RLGCa=0.001, 0.03nH,0.5fF,1e-5
RLGCb=0.002,0.01nH,0.5fF,1e-5

Right: Bigger discontinuity

RLGCa=0.001, 0.03nH,50fF,1e-3
RLGCb=0.002,0.01nH,50fF,1e-3
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Characteristic Impedance by Maximum 
Identification (1)

•Let’s try to 
understand where 
the dips are coming from……. 

0

50

100

150

10
7

10
8

10
9

10
10

10
11
-10

0

10

20

abs(B)

abs(C)

imag(Zc)

0

50

100

150

10
7

10
8

10
9

10
10

10
11
40

50

60

70

abs(B)

abs(C)

real(Zc)

0

50

100

150

10
7

10
8

10
9

10
10

10
11
-10

0

10

20

abs(B)

abs(C)

imag(Zc)

0

50

100

150

10
7

10
8

10
9

10
10

10
11
40

50

60

70

abs(B)

abs(C)

real(Zc)

Sensitive

location

B BB B

•The maximums can be
identified (away from 
sensitive areas)

•Less # of points but

ABCD

C

B
Zc =

16

0 1 2 3 4

x 10
10

-300

-200

-100

0

100

200

300

400

Freq[Hz]

B

 

 

real(B)

real(Bfitted)

max

2.6 2.7 2.8 2.9 3 3.1

x 10
10

-150

-100

-50

0

50

100

150

Freq[Hz]

B

 

 

real(B)

real(Bfitted)

max

0 1 2 3 4

x 10
10

-300

-200

-100

0

100

200

300

400

Freq[Hz]

B

 

 

real(B)

real(Bfitted)

max

2.6 2.7 2.8 2.9 3 3.1

x 10
10

-150

-100

-50

0

50

100

150

Freq[Hz]

B

 

 

real(B)

real(Bfitted)

max

zz

zz

zz

e
Zc

V
e

Zc

V
zI

eIeIzI

eVeVzV

γγ

γγ

γγ

−
−

+

−−+

−−+

−=

+=

+=

)(

)(

)(

•Less # of points but
enough to understand
frequency dependency



Characteristic Impedance by Maximum 
Identification (2)

• The Characteristic 
Impedance 
information is solely 
contained in the 
Bmax, Cmax curves

• We can see how it 
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• We can see how it 
“almost” averages 
the results. The 
maximum-only 
curve doesn’t have 
peaks, but the 
shape is still very 
questionable
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RLGC Results
Characteristic Impedance by Maximum Identification

• RLGC seems
to be modified
in a drastic
way, simply
by picking 
the maximum 
values
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Characteristic Impedance By Frequency 
Adjustment (1)

• Identify the maxima

• Interpolate to get
the most likely
maximum

• Adjust each curve
by half the
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by half the
difference
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Characteristic Impedance By Frequency 
Adjustment (2)

• This method cleans
the curves very
well

• Both, trends and
the peaks are
corrected 8 9 10
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corrected

• BUT, is this
good enough
for our ultimate
goal??? 
(RLGC extraction)
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RLGC Results
Characteristic Impedance by Frequency Adjustments

• The curves looks
reasonable but
still very noisy

• Let’s push it
further and
extract the
loss tangent
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extract the
loss tangent
from here
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Loss Tangent Extraction
Characteristic Impedance by Frequency Adjustments

• Even though we get 
a correct overall 
averaged trend, the 
results are noisy 
enough to mask any
necessary details
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necessary details
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So Where are we?

• Shown accurate S-parameter measurements

• Shown how to extract the Characteristic Impedance using 
several methods (Direct-Inversion, Impedance Renormalization, 
Maximum Identification, Frequency Adjustment)

• Developed math to account for small end-discontinuities.

• Method works in simulations environment and it could be very 
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• Method works in simulations environment and it could be very 
useful to enhance our understanding of 3-D structures.

• Methods were found to be lacking when it came to working with 
actual lab measurements

AND IT WAS THE TIME TO SUBMIT THE PAPER!!!



Let’s take a step back

•Zc Calculation is sensitive to what?

•How does Zc looks in terms of S-
parameters directly
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Going Back To Measurements

• Ways to further improve measurements

– Remove lead-in and lead-out traces

– Get data from other experts in the industry, with different 
methodologies, calibration techniques, to see if we can get better 
data 
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– Somehow improve S11 noise margin against the “unknown” 
(VNA + Calibration noise floor)

– Could it be that “real structural” effects on the transmission line are 
creating this behavior?, What about weave-effects?  Get a 
measurements of a non-glass reinforced material



Removing Lead-in Lead-Out

• Measurements from the side can be performed, hence 
completely eliminating lead-in and lead-out traces

• Mechanically complex calibration to do in our set-up 
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Getting Data from Other Experts

• Just to make sure we are not missing anything in our 
measurement methodology we wanted to compare the quality of 
our data to that of other industry experts
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• Different Calibration techniques, different VNAs, different labs, 
different users, SAME PROBLEM



Conclusion

• It is starting to look like the fundamental RLGC 
telegrapher equations may not be directly applied to 
measurements for the purpose of separating Dielectric 
vs. Conductive Losses

BUT 

• We are not yet convinced that this is not possible….. 
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Moving Forward

• Understand in further depth the error expected from the VNA

– VNA return loss noise floor
– VNA different calibration techniques

• Make sure the measurement artifact is not coming from real 
transmission line structural elements

– Measure non-glass-materials in different ways 
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– Measure non-glass-materials in different ways 
– Measure simple coax semi-rigid cables with wafer-probes

• Improve measurement techniques by engaging with other 
industry experts

– Compare S-parameter measurements on equivalent samples
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