Examining the Impact of Power Structures on EM Model Accuracy

8-TA3

Jason R. Miller, Roger Dame, Gustavo J. Blando and Istvan Novak Oracle Scott McMorrow, Teraspeed Ashley Rebelo, Alejandro Lacap and Xiangyin Zeng, LSI

Introduction

- 3D FWS are considered to be some of the most accurate field solvers
- With typical compute resources, it isn't practical to analyze whole packages
- Consequently, 3D EM models are often developed with certain assumptions to reduce solve time

Introduction

- Implicit or explicit assumptions can impact model accuracy
- For example, high-frequency return current resides underneath or in vicinity of trace. But what happens at via transitions?
- Investigate the accuracy and limitations of these assumptions

Questions:

- What is missed by sectioning or truncating the package?
- What interaction happens on the scale of typical packages?
- What field solvers can we use to simulate whole packages?
- Ultimately, how can we develop more accurate models?

Agenda

- Brief theory of cavity resonances
- Signal and cavity interactions
 - Excitation of cavities
 - Modifying cavity resonances
 - Containment vias
- Boundary conditions
- Another Take on Via Impedance & Field non-locality
- Simulating signal-plane cavity interactions
 - Two package examples
 - Buildup vias versus core vias
- Correlation to measurements
- Summary

Brief Theory of Cavity Resonances

DESIGNCON® 2011 Where Chipheads Connect

Signal Excitation of Plane Cavities

- Transmission line mode to parallel plane waveguide mode
 - Signal path discontinuity, e.g. due to a split
 - ➢ Via transitions
- Focus here is on excitation of cavities from signal vias transitioning through cavities.

Signal and Cavity Interactions

Modifying Cavity Resonances

Modifying Cavity Resonances

Containment Vias

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

Solver Boundary Conditions

DESIGN CON[®] 2011 Where Chipheads Connect

Solver Boundary Conditions

DESIGN CON[®] 2011 Where Chipheads Connect

Containment Vias

Absorbing Boundary

Magnetic Boundary

DESIGNCON® 2011 Where Chipheads Connect

Another Take on Via Impedance

Non-locality of Fields

Non-locality of Fields

Coupled Differential Via Correlation

Simulating Signal-Plane Cavity Interactions

Simulating Signal-Plane Cavity Interactions

DESIGNCON[®] 2011 Where Chipheads Connect

Differential vs. Single Ended Signals

- In general differential signals show less IL and crosstalk
 peaking due to cavity modal resonances
- BUT mode conversion and NEXT will not make this go away
- NEXT is not subjected to channel losses
 - If Rx is subjected to say 20 dB channel loss than every channel will have 1-10% crosstalk
- Also note that this crosstalk is NOT localized, i.e. simply separating Rx and Tx doesn't necessarily address this

Simulating Signal-Plane Cavity Interactions

Thin Buildup Layer Test Design Do those thin layers help?

Thin Buildup Layer Via Excitation Simulation Comparison

Thin Buildup Layer Via Excitation Simulation Comparison

Conservation of Misery

- Without additional dissipation, ground vias only serve to move resonance problems out of band.
- The higher the frequency, the harder it is to "Whack" the mole.

Summary

- Package model extraction using truncated or segmented models has assumptions and limitations
- Vertical transitions in packages and PCBs can excite cavities
- Cavity resonances can have a significant impact on the signal loss, crosstalk and return loss
- Cavity resonances can generate crosstalk that is highly nonlocalized (as we saw from the e-fields distribution plots)
- Boundary conditions also determine whether these resonances are captured
- "Containing" the energy in a vertical transition may be an option but may introduce its own resonances and may not be practical

Summary

- Capturing the signal to plane pair cavity coupling can require that electrically large structures are simulated.
- Hybrid solvers are a good choice for analyzing this type of problem if they are characterized against benchmark structures and their limitations understood

