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Outline 
Part I: Dynamic Characterization of DC-DC Converters 

from a System's Perspective
• I. Introduction and background

• Dynamic specification items
• Output filter
• Modulator
• Error amplifier and Loop compensation

• II. Dynamic parameters of DC-DC converters from a 
system’s perspective
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Outline (continued):
• III. Output impedance of DC-DC converters

• How source impedance influences output impedance
• Multiple Converters in Parallel
• Observations and Assumptions
• Digital Control

• IV. Measurements, Modeling, Simulations
• Measurements
• Modeling, simulations

• Conclusions
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Outline (continued) 
• Power Filter Application
• Filter input impedance, converter looking toward the load
• Filter input impedance, the load looking toward the converter
• Filter Inductor

• II. Actual Circuit Used and Measurements
• Added Bulk Capacitors Removed

• Summary
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Motivation

• Number of DC-DC converters is on the rise

• Dynamic noise allowance keeps shrinking

• Recent converter trends offer new solutions 
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Quiz Question 1
• Which step response will guarantee smaller 

worst-case noise A or B?
Step response [V]
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Quiz Question 2
• Which impedance profile will guarantee 

smaller worst-case noise, A or B?
Impedance magnitude [ohm]
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1.E-1

1.E-4 1.E-3 1.E-2 1.E-1 1.E+0 1.E+1 1.E+2
Frequency [MHz]
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Quiz Question 3
• In what frequency range will the converter 

loop influence transient response and output 
impedance?
• Up to 10x the cross-over frequency
• Not above the cross-over frequency
• Up to 2x the cross-over frequency
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Outline 
Part I: Dynamic Characterization of DC-DC Converters 

from a System's Perspective
• I. Introduction and background

• Dynamic specification items
• Output filter
• Modulator
• Error amplifier and Loop compensation

• II. Dynamic parameters of DC-DC converters from a 
system’s perspective
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Non-isolated Buck Converter

inout VDV 
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The Feedback Loop

EACFMloop GGGGG 
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Dynamic Parameters

• Loop stability is the most important

• Load response or output impedance

• Line response, input impedance

• Output ripple, ringing noise
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Output Filter in Voltage-Mode Control
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GF Transfer Function
Assume infinite load impedance
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GF Transfer Function

Assume infinite load impedance

Normalized view: A typical plot:
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Modulator

osc

in
M V

VG 
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Error Amplifier and Loop 
Compensation

• PID (Proportional-Integral-Derivative)

• Type I (Integral)

• Type II (Integral-Proportional)

• Type III (Integral-Proportional-Derivative)
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Type I Compensation
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Type II Compensation
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Type III Compensation
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A Type III Implementation
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Putting the Loop Together
A typical loop gain plot for 

voltage-mode control with 

Type III compensation.

Important parameters:
• Cross-over frequency
• Phase margin
• Gain margin
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Closed-Loop Output Impedance
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Line Regulation
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Outline 
Part I: Dynamic Characterization of DC-DC Converters 

from a System's Perspective
• I. Introduction and background

• Dynamic specification items
• Output filter
• Modulator
• Error amplifier and Loop compensation

• II. Dynamic parameters of DC-DC converters from a 
system’s perspective
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The Reverse Pulse Technique

Assumptions:
• PDN is LTI
• Random current steps
• Bounded step size
• Bounded step speed
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The Reverse Pulse Technique
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Noise vs. Impedance Profile
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Noise vs. Impedance Profile
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Impedance Matching in PDN
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Outline (continued):
• III. Output impedance of DC-DC converters

• How source impedance influences output impedance
• Multiple Converters in Parallel
• Observations and Assumptions
• Digital Control

• IV. Measurements, Modeling, Simulations
• Measurements
• Modeling, simulations

• Conclusions
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Open-Loop Output Impedance
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Closed-Loop Output Impedance
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Closed-Loop Output Impedance 
vs. Crossover Frequency
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Outline (continued):
• III. Output impedance of DC-DC converters

• How source impedance influences output impedance
• Multiple Converters in Parallel
• Observations and Assumptions
• Digital Control

• IV. Measurements, Modeling, Simulations
• Measurements
• Modeling, simulations

• Conclusions
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Output Impedance, Vin = 3.3V

Vout = 1.8V, 4A max rated current

3.5A
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Output Impedance, Vin = 5.0V

Vout = 1.8V, 4A max rated current

3.5A
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Output Impedance vs. Gain-Phase

Vin = 3.3V, Vout = 1.8V, 2A max rated current
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Output Impedance vs. Time Domain

Vin = 3.3V, Vout = 1.8V, 6A max rated current

230 mOhm
at 24 kHz
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Output Impedance vs. Time Domain

Vin = 3.3V, Vout = 1.8V, 6A max rated current

1App excitation 
current, 24 kHz, 

3.5A average

214 mVpp
response on 
the output

1App excitation 
current, 1 kHz, 
3.5A average

92 mVpp
response on 
the output
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Impedance Across Input

Vin = 3.3V, Vout = 1.8V, 4A max rated current
Peak increases with load current

0A 4A
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Input vs. Output Impedance
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Impedance Model of Source/Input

Critical negative load 
resistance:
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Input Peaking: The Solution

330 uF 25 mOhm polymer capacitor across input
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Multiple Converters in 
Parallel
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Multiple Converters in Parallel
• In Multi-phase systems, each 

phase must share current.

• Current share eases design 
requirements on each phase

• Current share is both a static 
and dynamic requirement.
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Multiple Converters in Parallel
• In a multi-phase system, each phase can be 

represented by its Thevenin equivalent

• This allows the system to be simplified into the parallel 
combination of source impedances, Zi.
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Multiple Converters in Parallel
• The power system and load share a common voltage 

(across the load).  At medium frequencies the 
impedance of the passive output network scales with 
the number of phases.

Or
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Multiple Converters in Parallel
• So what does this mean?

• … the dynamics of a multiphase system can be scaled 
to the dynamics of a single phase system with load 
impedance, ZL, scaled by the number of phases!
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Supplies OFF Output Impedance
Impedance magnitude, OFF [ohm]

1.E-3

1.E-2

1.E-1

1.E+3 1.E+4 1.E+5 1.E+6 1.E+7
Frequency [Hz]

x1
x2

x3
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Supplies OFF – Main Points
• For low frequencies, OFF impedance scales with 

number of supplies added

• As frequency increases, series parasitic inductance 
between supplies isolates supplies, so parallel 
supplies have diminishing effect.

• What happens when the supplies are turned on?
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Supplies ON, 5A Load
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Supplies ON, 15A Load
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Supplies ON – Main Points
• At low frequencies the high DC loop gain establishes 

very low impedance, which gets masked out by 
residual connection resistance - no difference in 
single, two or three phase plots.

• As frequency increases, loop gain decreases, and 
impedance distributes according to passive 
impedance of each phase.

• At high frequencies, parastics dominate. 
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Multiple Converters in Parallel
• What about the time domain?

• Switching of paralleled converters are typically phase 
shifted by 360˚/N, where N is the number of supplies

• Do we see similar scaling in output voltage ripple?
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Vout Ripple Scaling
• Dominate contribution of Vout ripple is inductor ripple 

current multiplied across output capacitor ESR.

• By phase shifting the switching by 360˚/N, effective 
switching frequency increases, resulting in a decrease 
in Vout ripple.

• What if phase shifting is disabled?
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30mVpp 30mVpp
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Why multiphase?
• When properly designed, current is divided between 

phases – makes design of 30A+ buck converters 
realizable and cost effective.
• Distributes the thermal loading
• Small, cost effective inductors

• Output impedance scales with number of phases added.

• When phases are phase shifted, Vout ripple scales with 
number of phases.



64

Digital Control
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Digital Control
• Digital Control is rising in popularity

• Many different techniques, but same basic result 
– produce PWM pulse using digital techniques.

• Analog control uses analog filters in control loop; 
Digital control uses digital filters, which combine 
current and historical gained values.
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• Programmability/Configurability
• Software and Hardware

• More sophisticated algorithms

• Control

• Monitoring

• Components
• Storage

• Math operations

• Numerical Stability (e.g. drift)
• Calibration

• Silicon Processes

• Resistance to noise

Advantages to Digital Power

Reduced component count
Higher Density
Lower (system) cost
Better reuse
Faster time to market

100 pf MCU A/D Pad
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• Analog
• Well understood
• External control and 
compensation components

• “Textbook” Digital
• DSP – brute force=$

• Power Optimized Digital
• Efficient compensation
• Strap configurable
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Digital PID Filter
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Digital PID Filter

• A, B and C are gain coefficients for various “taps”.

• First term in denominator is due to delays in signal 
path

• T is the switching frequency of the PWM
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Digital PID Filter
• Digital PID compensator has two Zeros, a pole at 

zero and a pole at infinity.

• Two zeros can be either real or a complex conjugate 
pair.

• Not limited to just real zeros like in a Type III analog 
compensator!
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Other Advantages…
• Compensation values are stored in digital registers 

– no need for solder iron to change compensation!

• Automatic compensation algorithms – controller 
can automatically characterize and compensate 
plant.

• Non-linear control algorithms can easily be 
implemented.
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What is Non-linear Control?
• Fast control loop which by-passes normal, slower, 

PID control loop.

• Many ways to implement – one example is a 
threshold based approach.

• Net effect is to increases effective control loop 
bandwidth.
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• Neat, but does it show up in output 
impedance measurements?
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Small-signal impedance magnitude [ohm]

1.E-3

1.E-2

1.E-1

1.E+3 1.E+4 1.E+5 1.E+6 1.E+7
Frequency [Hz]

unpowered

NLR OFF, NLR ON
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• No, not in small signal output 
impedance measurements.

• Excitation signal is not large enough 
to excite NLR response.

• What about time domain?
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148mVpp 100mVpp

• 33% Reduction in output deviation with NLR!
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Outline (continued):
• III. Output impedance of DC-DC converters

• How source impedance influences output impedance
• Multiple Converters in Parallel
• Observations and Assumptions
• Digital Control

• IV. Measurements, Modeling, Simulations
• Measurements
• Modeling, simulations

• Conclusions
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Gain-Phase Measurement
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Gain-Phase Results (1)
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Gain-Phase Results (2)
Error amplifier 

saturation

Instrument 
noise floor
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Measuring Low Impedances
The Problems

Problems with one-port 
impedance measurements:

• Discontinuity is in series to 
the unknown low impedance

• Reflection reading is not 
accurate for large reflections
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Measuring Low Impedances
The Solution

Benefits of two-port impedance 
measurements:

• Discontinuity is in series to 
the 50-Ohm VNA impedance

• Small DUT voltage is 
measured by a separate 
input (Kelvin connection)
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Measuring Full Systems (1)

Ferrite isolation with 
grounded ports

DC power splitter with 
floating-ground inputs
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Measuring Full Systems (2)

Correct reading with 
ferrite isolation

Incorrect reading 
without ferrite isolation
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Large-Signal Zout Measurement
Large-signal load
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Load Transient Measurement
Transient load
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Multi-
Purpose 

Test Setup
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Large-Signal 
Output 

Impedance 
Measurement 

Setup
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Small-
Signal vs. 

Large-
Signal 
Output 

Impedance
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Output Impedance from Step 
Response

DUT

iload

vout

• The noise transfer function is 
vout/iload

• The Fourier Transform of the 
transfer function is the 
Impulse Response

• The Step Response is the 
integral of the Impulse
Response
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Step 
Response

1App excitation 
current, 1 kHz, 
1.5A average

Step response
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Zout from Step Response

• Blue trace: 
small-signal Zout

• Red trace: Zout
from Step 
Response
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Conclusions
• For linearized behavior

• Dynamic converter parameters can be based on the Gain-
Phase function

• Output impedance is a good measure for dynamic response
• Output impedance can be measured or simulated by
• Swept-sine small signal
• Swept-sine large signal
• Derivative of the Fourier Transform of the Step Response

• Source impedance can greatly influence output impedance
• Output impedance can go above OFF impedance (peaking) for 

several decades beyond the crossover frequency
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Conclusions (continued)
• Paralleled converter outputs will

• Reduce output impedance proportional to the number of phases
• Not change crossover frequency

• Nonlinear control can reduce the magnitude of 
instantaneous transient response

• Gain-Phase and output impedance measurements can 
be achieved with a unified setup
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Outline
Part II: Power Filter Network and its Effect on DC-DC 

Converters
• I.  Introduction and Background Information

• DC Converters Introduction
• Power Filter Introduction
• DC Converter Specifications
• Filter Specifications
• The DC Converter Application
• Cross-Over Frequency
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Outline (continued)
• Power Filter Application
• Filter input impedance, converter looking toward the load
• Filter input impedance, the load looking toward the converter
• Filter Inductor

• II. Actual Circuit Used and Measurements
• Added Bulk Capacitors Removed

• Summary
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Outline
Part II: Power Filter Network and its Effect on DC-DC 

Converters
• I.  Introduction and Background Information

• DC Converters Introduction
• Power Filter Introduction
• DC Converter Specifications
• Filter Specifications
• The DC Converter Application
• Cross-Over Frequency
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Why Do We Need More Filtering?

● I/O frequencies are increasing beyond 10Gb/s

● Sensitive circuits need reduced noise levels –
less than 5 mV Pk – Pk

● Chips with PLL circuits operating at                       
frequencies of 1 MHz and above
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A Brief Survey –
What Inductors Were Chosen?

● Ferrite Beads for applications up to 6 Amperes

● Gapped Inductors for larger currents > 6 Amperes

● Need for low resistive loss to keep efficiencies high

● Small Size
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Ferrite
Beads

Gapped
Inductors
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Important Things About Inductors

● Signal Inductors are very sensitive to DC bias 
currents

● Power Line Ferrite Beads

Resistive value decreases with increasing current

Inductance decreases with increasing current

Not all ferrite beads are created equally!
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Ferrite Bead, 30 
Red, DC Current = 0.0 A
Blue, DC Current = 1.8 A

Not all suppliers 
provide DC Bias 
Information!!

The effects of DC
bias is dependent on
the materials used
in the manufacturing
of the product

Ferrite Bead 
DC Bias
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We could of course use a big power inductor !!

The larger inductors
behave more in
line with our
expectations
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Power Supplies – Where is the Industry going?

Integrated Power Solutions

● FETs and Inductor integrated with controller
● Compensation loops integrated with the package
● User adds voltage divider to set output voltage

Digital Control Systems

● PID Controllers offer a means to alter the           
behavior through firmware instead of added 
components.
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DC Converters

Typical Buck Regulator
Non – Isolated 10 Amp

15 mm x 15 mm x 3.5 mm

Fully Integrated,
PID ControlWhat information do we 

need to know about this 
regulator?
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Vin Vout
DC

Converter

Basic DC Converter Implementation

Converter Consists Of

(2)  Power FETs      
(1) Power Inductor

(1)  Digital Controller
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The converter vendor does not
provide information about:

The converter vendor does
provide information about:

Input Voltage Range
Output Voltage Range
Output Current
Switching Frequency
Line and Load 
Regulation
Set Point Accuracy

Type of Controller:
Voltage Mode
Current Mode

Bandwidth of Loop
Compensation

Cross – Over Frequency
Output Inductor & DCR
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Filter Requirements, What are they?

0.01  0.1    1.0  10  100 MHz

Vendors in general
don't provide
information on
what the  max 
noise voltage that 
can be tolerated, 
nor the frequency 
range needed Attenuation Requirements ???
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Filter Requirements – General Rule of Thumb

Remember!!!!

General Rules of Thumb
make certain assumptions

that may or may not be true!

Assumptions

1.  Nominal Noise Voltage of 1mV

2.  Attenuation -20dB/decade

3. Corner Frequency 100 KHz
And 100 MHz

Assumed Filter Requirements
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DC  Converter      PDN
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Big “V”  PDN Flat Z PDN

Flat Region resulting from 
several different types of 
capacitors

Big “V” resulting from 
usage of many of the same 
capacitor
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DC Converter          Target Impedance

Example

Vout = 1.800 V
Iout = 4.000 A
Set Point Accuracy = 18 mV
Max deviation = 90 mV (5%)
Inductor Ripple Current =  1.200 A

Example

Vout = 1.800 V
Iout = 4.000 A
Set Point Accuracy = 18 mV
Max deviation = 90 mV (5%)
Inductor Ripple Current =  1.200 A

Allowances

90 mV – 18 mV = 72 mV
Ripple Voltage = 37.5%  or 27 mV

Target Z = 27 mV/ 1.200A = 22.5 m

Allowances

90 mV – 18 mV = 72 mV
Ripple Voltage = 37.5%  or 27 mV

Target Z = 27 mV/ 1.200A = 22.5 m0.001

0.01
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1
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Frequency

Impedance [Ohm] Target Z

Target Z
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DC Converter Loop Cross – Over Frequency Problem

Issues:

An integrated regulator.  
No information about the internal inductor.
No information on the type of controller.
No information about the loop compensation

Issues:

An integrated regulator.  
No information about the internal inductor.
No information on the type of controller.
No information about the loop compensation

Solutions:

Ask the vendor or….
Assume both Voltage Mode and

Current Mode Controller

Solutions:

Ask the vendor or….
Assume both Voltage Mode and

Current Mode Controller
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Estimating  The Cross – Over Frequency For a Current Mode Controller  

Estimated Corner Frequencies

Fc1 = 1 / ( Rload Cbulk )

Fc2 = 1 / ( RESR Cbulk )

Estimated Corner Frequencies

Fc1 = 1 / ( Rload Cbulk )

Fc2 = 1 / ( RESR Cbulk )

Estimated Error Amplifier Gain

0 dB @ 1 MHz

+ 120 dB @ 1 Hz.

Estimated Error Amplifier Gain

0 dB @ 1 MHz

+ 120 dB @ 1 Hz.

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08
‐40
‐20
0
20
40
60
80

100

Frequency

Error Amp Gain (dB)

Estimated Gain Needed

Gain Needed  ~ 10((120 – G) / 20)  

Where G =  20Log( Vout/ Vripple )

Estimated Gain Needed

Gain Needed  ~ 10((120 – G) / 20)  

Where G =  20Log( Vout/ Vripple )
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Power Filter Application – What is it that we need to Accomplish?

• Just as in Signal Integrity work, we need to match the load to the source.

• We also must match the source to the load.

• We need to have sufficient attenuation to meet the requirement of the 

target device, without gain.

• We shall not cause instability of the regulator with the additional filter.

• Just as in Signal Integrity work, we need to match the load to the source.

• We also must match the source to the load.

• We need to have sufficient attenuation to meet the requirement of the 

target device, without gain.

• We shall not cause instability of the regulator with the additional filter.
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Matching the Source to the LoadMatching the Source to the Load

Vin Vout
DC

Converter
Load
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What the Regulator Will See With a FilterWhat the Regulator Will See With a Filter

== RLoad
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What Will The Load See?

The Load 
Sees Just 
the PDN

The Load 
Sees Just 
the PDN



120

What The Load Sees With A FilterWhat The Load Sees With A Filter

==

Do We Have a Nasty 
Parallel Resonance 
Problem ?
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Parallel Resonance – Defining Its Value

Isn’t its frequency just …..  

Actually, it is more than that ….

And if the radical is set to “0”, then there is no resonance!!

Suggesting that …
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Outline (continued)
• Power Filter Application
• Filter input impedance, converter looking toward the load
• Filter input impedance, the load looking toward the converter
• Filter Inductor

• II. Actual Circuit Used and Measurements
• Added Bulk Capacitors Removed

• Summary
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DESIGN EXAMPLE  -- 1DESIGN EXAMPLE  -- 1

Design Requirements   # 1:

Ripple and Noise Voltage  ………  1 mV @ Load
Attenuation Profile

-20dB starting at 100 KHz
+20 dB starting at 10 MHz

Ripple Voltage from regulator …. .27 mV
Target Impedance ………………. 22.5 m
PDN – Flat Impedance Design

(1) 220 F, Poly. Tant. ESR = 25 m
F, Ceramic, 10 V, X5R  ESR = 4 m
F, Ceramic, 10 V, X5R  ESR = 10 m

Design Requirements   # 1:

Ripple and Noise Voltage  ………  1 mV @ Load
Attenuation Profile

-20dB starting at 100 KHz
+20 dB starting at 10 MHz

Ripple Voltage from regulator …. .27 mV
Target Impedance ………………. 22.5 m
PDN – Flat Impedance Design

(1) 220 F, Poly. Tant. ESR = 25 m
F, Ceramic, 10 V, X5R  ESR = 4 m
F, Ceramic, 10 V, X5R  ESR = 10 m
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DESIGN EXAMPLE  -- 2DESIGN EXAMPLE  -- 2

Design Requirements   # 2:

Ripple and Noise Voltage  ………  1 mV @ Load
Attenuation Profile

-20dB starting at 100 KHz
+20 dB starting at 10 MHz

Ripple Voltage from regulator …. .27 mV
Target Impedance ………………. 22.5 m
PDN – Big “V”

(1) 22 F, Ceramic, 10 V, X5R  ESR = 4 m

Design Requirements   # 2:

Ripple and Noise Voltage  ………  1 mV @ Load
Attenuation Profile

-20dB starting at 100 KHz
+20 dB starting at 10 MHz

Ripple Voltage from regulator …. .27 mV
Target Impedance ………………. 22.5 m
PDN – Big “V”

(1) 22 F, Ceramic, 10 V, X5R  ESR = 4 m
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DESIGN EXAMPLE  -- 3DESIGN EXAMPLE  -- 3

Regulator  Specifications:

1. Switching Frequency……  1 MHz
2. Controller Type …..   Current Mode (Asked Vendor)
3. Set Voltage ….. 1.800 V
4. Output Current …. 4.0 A
5. Minimum Bulk Capacitance …22 F

Regulator  Specifications:

1. Switching Frequency……  1 MHz
2. Controller Type …..   Current Mode (Asked Vendor)
3. Set Voltage ….. 1.800 V
4. Output Current …. 4.0 A
5. Minimum Bulk Capacitance …22 F
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Gain (22 uF) [dB]

~170 kHz

‐60

‐40

‐20

0

20

40

60

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07
Frequency

Gain (242 uF) [dB]

~24 kHz

Error Amp Cross – Over Frequency EstimationError Amp Cross – Over Frequency Estimation

Gain Needed = 20Log(Vout /V ripple)  =  32.64 dB

Fc1 = 1/(2π(0.45)(242 µF) ) = 1462 Hz  

Fc2 = 1/(2π(0.002)(242 µF) ) = 329 KHz  

F0dB = ((Fc1)(Fc2))0.5 = 22 KHz  

Fc1 = 1/(2π(0.45)(22 µF) ) = 16.1 KHz  

Fc2 = 1/(2π(0.004)(22 µF) ) = 1.81 MHz  

F0dB = ((Fc1)(Fc2))0.5 = 170 KHz  
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Regulator OFF, Quick Estimates of PDN Impedance, 
Cross – Over Frequency, and Target Impedance

Regulator OFF, Quick Estimates of PDN Impedance, 
Cross – Over Frequency, and Target Impedance

Case #2  Bulk C = 22 FCase #1  Bulk C = 242 F
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Filter DesignFilter Design

Looking From Converter to Load

Attenuation Needed is base on -20 dB/decadeAttenuation Needed is base on -20 dB/decade

Ripple Voltage  = 27 mV,  
(Maximum Noise Voltage)(0.5)/Ripple Voltage = -34.6 dB
Ripple Voltage  = 27 mV,  
(Maximum Noise Voltage)(0.5)/Ripple Voltage = -34.6 dB

Specified attenuation to occur at 1 MHZ; therefore,  ……
Corner Frequency  = (1 MHz)(10(Attenuation/20) )  = 13KHz
Specified attenuation to occur at 1 MHZ; therefore,  ……
Corner Frequency  = (1 MHz)(10(Attenuation/20) )  = 13KHz

Initial value of Inductance  =  Target Z/( Fcorner) = 274 nH

Initial value of Capacitance  =  Inductance/(Target Z)2 = 540 µF

Initial value of Inductance  =  Target Z/( Fcorner) = 274 nH

Initial value of Capacitance  =  Inductance/(Target Z)2 = 540 µF
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Filter Design ContinuedFilter Design Continued

Our survey indicated a need for small  parts.

With an inductance value of  274 nH in a ferrite bead rated for our 
maximum current of 4 Amps is tough to get.

Lowered the value of inductance to 120 nH which is readily available and 
is small, 0603 package.

In lowering the inductance, the capacitance needs to be valuated, the new 
value based on the Zo of the filter suggests a value of 270 µF, 
220 µF has been selected, a poly Tantalum, ESR = 25 mΩ.

To extend the bandwidth, (2) 22 µF ceramic capacitors were added.

Our survey indicated a need for small  parts.

With an inductance value of  274 nH in a ferrite bead rated for our 
maximum current of 4 Amps is tough to get.

Lowered the value of inductance to 120 nH which is readily available and 
is small, 0603 package.

In lowering the inductance, the capacitance needs to be valuated, the new 
value based on the Zo of the filter suggests a value of 270 µF, 
220 µF has been selected, a poly Tantalum, ESR = 25 mΩ.

To extend the bandwidth, (2) 22 µF ceramic capacitors were added.
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How well did we do?
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Filter Characteristics

Frequency [Hz]

M
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de

Met the corner frequency
requirement
Met the corner frequency
requirement

Met the Attenuation 
factor at 1 MHz
Met the Attenuation 
factor at 1 MHz

Virtually NO 
Gain!
Virtually NO 
Gain!
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Filter Design ContinuedFilter Design Continued

From The Load Side, Looking Toward The Regulator

The requirement is that the load should see the PDN at the 
regulator, this value is 22.5 mΩ.  We chose a 25 mΩ poly tantalum 
capacitor which is sufficient in terms of the ESR of the capacitor.

However, the tantalum capacitor turns inductive at about 1 MHz, it 
needs to be countered with ceramic capacitors that will extend the 
attenuation bandwidth towards 10 MHz.

The requirement is that the load should see the PDN at the 
regulator, this value is 22.5 mΩ.  We chose a 25 mΩ poly tantalum 
capacitor which is sufficient in terms of the ESR of the capacitor.

However, the tantalum capacitor turns inductive at about 1 MHz, it 
needs to be countered with ceramic capacitors that will extend the 
attenuation bandwidth towards 10 MHz.
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Total Design SolutionTotal Design Solution
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Filter Characteristics
Z11, Z22, Attenuation

Attenuation Phase22 Phase11 Z22 Z11

Frequency [Hz]
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Green,
looking from
the load to the 
converter.

Green,
looking from
the load to the 
converter.

Red,
looking from 
the converter 
to the load

Red,
looking from 
the converter 
to the load
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Measurements
Measurements  in the 
following section, were 
done with the filter addedAdded Filter

Regulator 
Evaluation 
Board

Bulk Capacitance 
added

Current Mode 
Controller
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Measured Output PDN – Case # 1Measured Output PDN – Case # 1

Regulator OFF Regulator ON,  0 Ampere Load

Cross – Over Frequency Regulator
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Measured Ripple Voltage
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Measured Output PDN – Case # 2Measured Output PDN – Case # 2

Regulator OFF Regulator ON,  0 Ampere Load

Cross – Over Frequency Regulator
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Measured Ripple Voltage Case #2
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Comparison Of Measured Output PDN Case # 1 & # 2Comparison Of Measured Output PDN Case # 1 & # 2

Regulator OFF, Case # 1 Regulator OFF, Case # 2
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Comparison Of Measured Output PDN Case # 1 & # 2Comparison Of Measured Output PDN Case # 1 & # 2

Regulator OFF, Case # 1 Regulator OFF, Case # 2
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Comparison Of Measured Output PDN Case # 1 & # 2Comparison Of Measured Output PDN Case # 1 & # 2

Regulator ON,  0 Ampere, Case # 1 Regulator ON,  0 Ampere, Case # 2
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Attenuation MeasurementsAttenuation Measurements

Case # 1, 0 Ampere  Load Case # 1, 4 Ampere  Load

Filter appears to have a slight lift, and the corner 
frequency is about 30 KHz, somewhat higher than 
simulation results.

Filter appears to have a slight lift, and the corner 
frequency is about 30 KHz, somewhat higher than 
simulation results.

Filter Inductance appears to have dropped by a 
factor of about 4, shows that the ferrite bead is 
affected by DC bias current.

Filter Inductance appears to have dropped by a 
factor of about 4, shows that the ferrite bead is 
affected by DC bias current.
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Measured Ripple Voltage Before /After the Filter,  4 Amp Load

Ripple Voltage Before Filter Ripple Voltage After Filter
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Moving The  Converter Sense Lines

All the measurements made thus far, have the sense 
lines connected at the filter.

What if we move the sense lines to a point after the 
filter components, would we see any difference in 
performance?

All the measurements made thus far, have the sense 
lines connected at the filter.

What if we move the sense lines to a point after the 
filter components, would we see any difference in 
performance?
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Investigation of the movement of the sense lines begins by first looking 
at the output impedance of the regulator, that is at the bulk capacitors.

Regulator OFF Regulator ON, 0 Ampere Load
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Comparative Output Impedance, Before / After Sense Line Change

Regulators OFF

Sense Lines Before Filter Sense Lines After Filter
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Comparative Output Impedance, Before / After Sense Line Change

Regulators ON

Sense Lines Before Filter Sense Lines After Filter
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Comparative Output Impedance, Before / After Sense Line Change

Regulators ON,  4 Amp Load

Sense Lines Before Filter Sense Lines After Filter
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Comparative Attenuation, Before / After Sense Line Change

Attenuation,  4 Amp Load

Sense Lines Before Filter Sense Lines After Filter
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Comparative Attenuation, Before / After Sense Line Change

Ripple Voltage Attenuation,  4 Amp Load

Sense Lines Before Filter Sense Lines After Filter
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Change to Case #2, where the Bulk Capacitor is 22 µF.
A comparison of the location of the sense lines, before
and after the filter.

What are differences in Output Impedances with the 
change in the sense line location?

Is there any differences in Attenuation?

Is there any differences in the measured ripple voltages?

Change to Case #2, where the Bulk Capacitor is 22 µF.
A comparison of the location of the sense lines, before
and after the filter.

What are differences in Output Impedances with the 
change in the sense line location?

Is there any differences in Attenuation?

Is there any differences in the measured ripple voltages?
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Comparison of Output Impedances

Regulator OFF,  Before Filter Regulator OFF,   After Filter
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Comparison of Output Impedances

Regulator ON,  0 Amp Load, Before Filter Regulator ON,  0 Amp Load, After Filter
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Comparison of Output Impedances

Regulator ON,  4 Amp Load, Before Filter Regulator ON,  4 Amp Load, After Filter
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Measured Attenuation With 0 Ampere Load

Some Strange 
event going on 
here!

Some Strange 
event going on 
here!
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Comparison of Ripple Voltages

Regulator ON,  0 Amp Load, Before Filter Regulator ON,  0 Amp Load, After Filter

Opps!  Oscillations
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Measured Attenuation With 4 Ampere Load

Here it is 
again!
Here it is 
again!
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Comparison of Ripple Voltages

Regulator ON,  4 Amp Load, Before Filter Regulator ON,  4 Amp Load, After Filter
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Summary of the Design ChallengeSummary of the Design Challenge

• Using a Current Mode Controller, without knowledge of any information about     
the compensation loop, we designed a power filter network that required a 

1 mV noise level at 1 MHz.
• The resulting design using a target impedance that is basically flat;

• The corner frequency of the filter occurs approximately where the            
simulation indicated
• The resulting attenuation of the ripple noise was below the maximum       
assumed level required of 1 mV.  Typical results show 500 – 800 µV        of 
noise voltage.
• The DC converter showed no ill effect from having a power filter             
attached, it appears to be stable, indicating:

• Matching the source to the load was accomplished
• Matching the load to the source was also accomplished
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Summary Continued – Surprises!Summary Continued – Surprises!

• Observation of the effects of a ferrite bead used to it maximum rated value    
of current indicates that the bead saturates, reducing its inductance and   

series resistance significantly.
• Use of a ferrite bead may cause the attenuation requirements not to be             
met even with a flat output impedance.
• Use of a target impedance that is constructed by using the concept of a     

Big “V”, with minimal amount of capacitance can be a significant                   
problem.

• It may cause instability of the DC converter.
• Attenuation requirements may not be met.

• Sense lines for the DC converter should be located before the filter to             
avoid instability issues for the DC converter.
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Other ObservationsOther Observations

• In the design of the power filter, the corner frequency should be higher         
in frequency than the cross – over frequency of the compensation loop.

• There will be no interference between the 2 systems, the                  
compensation loop does not necessarily maintain the output            
impedance beyond the point where the gain goes below 0 dB.
• Using a corner frequency inside the compensation loop control       
may alter the phase and should it fall so that there is no phase         
margin, may cause instability issues for the DC converter.

• Placing the sense lines of the converter before the filter helps to avoid           
the issue of interference between the 2 systems.
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THANK YOU!

ANY QUESTIONS?


