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Introduction

L PDN designs get more challenging
= Dropping supply voltages
= More interactions between power supply rails
= Stringent target impedance
= PDN impedance requirement can be in the sub-milliohm range

O Low-frequency simulations pose resource and setup challenges

0 Measurement of extremely low impedance is vulnerable to multiple factors
= Ground loop error
= Noise floor
» Measurement discontinuities
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Potential Issues with DC Drop Simulation

(EI Large pads for high-current devices )

O Attached device may force equipotential surface

"

O In extreme case, if simulation does not enforce
equipotential surface, voltage drop can be as high as S98mY
5mV across a typical DC-DC converter pad '

O Assuming equipotential pad will result in slightly 996mV
optimistic impedance I

WV,

Simulated current distribution with (left) and
U Hundreds of sources/loads with equipotential device without (right) equipotential pad option

assumption may lead up to 50% miscalculation of DC
drop in large dense memory arrays
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Potential Issue with AC Simulation

Impedance (Ohm)

6.00E-03
Q Simulating at low frequencies 5.00E-03 IE ~100% —
= Inter-plane coupling effect (skin-depth) 4.00E-03 difference _
* Full-wave solutions are challenged at low 3 00E-03 R
frequencies ) 00E.03 AL‘ b' ) Ky
. . . 1.00E-03 n A A A
Q0 AC simulations may show poor correlation for R A A
very low impedances 0005400 P1 P2 P3 P4 PS5

A AC Simulation B DC Simulation
Q0 Can be improved by fitting to DC simulation result A AC Measurement 0 DC Measurement

AC data are at 100 Hz
(DUT impedance is flat from DC up to 10 kHz)
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Potential Issues with Measurement

U Solutions:

O Measurement method = Increase shield inductance with large toroid
=  Network analyzer core
= Differential amplifier

O 1-portvs. 2-port measurement
" Error: Zconnection/ZDUT >> Zconnection/ZVNA
= Receive-only port provides much lower noise floor

O Ground loop error caused by test cable shield
resistance

=  Finite resistance of the cable shield creates a
common-mode error

Rerror:RbllleZ
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DUT with Low Impedance

U Large bare PCB with 4 power layers ¢ Power plane shape
O 80 ports on 8 memory controllers and 16 B BE
DIMM sockets s il W il
O Port(N) and Port(N+1) are in close proximity “ 7 23 = 3:5 50 | T
. Hence, Z(N,N+1)=Z(N,N)= Z(N+1,N+1)

0 DUT-CAP: shorted all capacitor pads
(DC-DC converter pads open)

0 DUT-VRM: shorted DC-DC converter pads

R 49 53 57 61 73 77
(capacitor pads open) ! J g g | & 75 | 79
67 71
o z
= Memory
sockets
Multi-phase DC- 207
16" DC converters
Shorted capacitor pads Approximate dimensions and placements of Port numbering definition

memory controllers and DIMM sockets
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Measurement Noise Floor

0 Noise floor is obtained by measuring on the
opposite sides of a solid metal sheet using )
the same measurement setup, cables, and

probes

—MEAS - Z(2,1)

—MEAS - Z(3,31)

L b ——MEAS - Z(5,33)

- Background Noise

0 Some very low measured transfer

impedances are masked by the
measurement noise floor

Impedance (Ohm)
o

O With the given setup, below 1 MHz, the
noise floor is around 10 microohms.

Frequency (Hz)
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Measurement Setup - DC

o Voltmeter s

Current ﬁ;\. Ay =
O Voltmeter (resolution=10 uV) | m |~ source o Bl s
O Current source (1A) O00O0 Coaxial
0 Coaxial cable (d=0.084") OO\ cable
Q 3D probe holder
Q Semirigid probe with spring-loaded

ground pin DUT

0 Measure voltage
Q R=VI

3D probe holder
Semi-rigid probe with
spring-loaded ground pin
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Measurement Setup - AC

VNA
VAVAVAN
C VA
Portl: Tx Coaxial u
VNA (100Hz ~ 100MHz) cable 7

Two-port shunt thru setup Isolation
0 dBm power

Isolation toroid

Ferrite-bead capped coaxial cables

3D probe holder

Semi-rigid probe with spring-loaded ground pin :
SOLT calibration = w
Cable with ferrite-beads & isolation transformer
to reduce cable-braid error

toroid Coaxial
Port2: Rx cable

3t

(I Iy Iy N Ny Iy Ry

Isolation toroid

Cable with ferrite-
beads
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Simulation Setup

0 Commercial hybrid solver 0 Detailed Setup Matters
O Extracts frequency-dependent . Stack-up (updated with cross-section data)
network parameters (S-parameter) = Material properties (metal conductivity, dielectric constant &
Q  Import layout file loss, via con.1du_ct|V|ty)_ _ | _
) ) " Extracted via dimensions (diameter, plating thickness)

3 Define port locations . DC solver option (engages DC-dedicated solver to calculate
O Frequency setup DC and low frequency points)

= 100Hz-100MHz, logarithmic step =  Void size to be neglected in the simulation (<60mil)
O Modeling of shorts ] Natural boundary condition considering radiation

»  Series R-L (R=1mOhm, L=1nH) =  Inter-plane coupling (neglected)
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Cross-Section Data

0 Two DUTs were cross-sectioned after completing
measurements Best Typical Worst

O Actual thickness of each metal/dielectric layer
J Via dlameter/plétmg sj[at|st|cs Copper Thickest Median Thinnest
O Created three simulation corner cases
representing best/typical/worst impedance profiles DE [ T
+Via diameter: 11.8 ~ 12.3mil
<Plating thickness: 1.1 ~ 1.6mil Via diameter Largest Median Smallest
(Unit: mil)
[ Layr | Layot | Board1 | Board2 Via plating Thickest Median Thinnest
Power1 1.20 1.24 1.23
424 4.01 4.04 c C%pp(ta_r i No Derated Derated
Power2 1.20 1.24 1.24 onauctivi Derating 10% 20%
1.00 0.97 0.96 y
Power3 1.20 1.23 1.23 " ESR 0 1mOhm 3mOhm
424 411 413 s =
st :gg ;zz ;SZ M = 0 1n~3nH 3nH
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DUT-VRM: DC Correlation

O Self-impedance results
0 VNA measurement point is at 100 Hz (impedance is flat from DC to 10 kHz)
0 Measurement data are within simulation corner cases

Impedance (Ohm) | gaite
3 7
7.00E-03 I" Py g
| 17 21 25 29 41 45
6.00E-03 A [10 | 23 27 | m s | @
. ﬁ "‘ 35 | 39
| ;
5.00E-03 A Typical teant
A Yp as
4.00E-03 i W Best
A Worst 11 15
3.00E-03 A - 65 | 69 -
i OVNA Measurement | 2 | 53 s | o o g
2.00E-03 X DC Measurement ESE 59 | 63 75 | 79
gEoe, 67 | 711
1.00E-03 @} =
0.00E+00
Z(1,2) Z(3,4) Z(9,10)
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DUT-VRM: DC Correlation

O Transfer-impedance results
0 VNA measurement point is at 100 Hz (impedance is flat from DC to 10 kHz)
O Impedance is as low as ~400 microohms
U Measurement data are within simulation corner cases
Impedance (Ohm)
2.00E-03 L ~ LLDY
1.80E-03 A :.‘-:7 . !".,5 ;3 - i
1.60E-03 A ’1-19’ 23 27 | 31 a3 | a7
L 35 39
1.40E-03 A A Typical s 1 J 5
1.20E-03 O A A M Best -
(]
1.00E-03 A Worst
8.00E-04 i A A OVNA Measurement | & 1 & J
: bug e, 53 57 | 61 f 73 :77_]
6.00E-04 H X DC Measurement :. 51 | &5 59 | 63 D |
. A LT -.“" 67 | 71
4.00E-04 ﬁ E]'} 13
T
2.00E-04
0.00E+00 J
2(1,3) Z(1,9) 2(1,17) Z(51,73)
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DUT-VRM: AC Correlation

O Self-impedance results
O Simulation is based on the typical values of the cross-section data

10—
[[—VNA Measurement - Z(1,2)
[|—VNA Measurement - Z(3,4)
|| =——=VNA Measurement - Z(9,10)
|| ——-Simulation Z(1,2) '-#
E _ ---S?mulat@on Z(3,4) ,'y{;,:
5 ===Simulation Z(9,10) i1
~ r’ /’
[0} -2 /?I /'
210 %
8 e O S i > :’Il/
o bt d b d B ¥ Wt
3
10
2 3 4 5 6
10 10 10 10 10 10
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33

37

17 21 25 29 41

19 23 27 31 43
35 39

;q 5
‘e » "’

65 69

49 53 57 61 73

51 55 59 63 75
67 71

“an?®
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DUT-VRM: AC Correlation

O Transfer-impedance results
O Simulation is based on the typical values of the cross-section data
O Electrical path: Z(51,73) > Z(1,17) > Z(1,9) > Z(1,3)

.,y
-1
10— yu “I:I B | %7 DIMMS  Memor
—VNA Measurement - Z(1,3) 517 |21 125 | 20 a1 | 45 y
—VNA Measurement - Z(1,9) ‘197 23 . 27 | 31 a3 | a7 ﬂ H Controller
VNA Measurement - Z(1,17) ? P ¥ s | 3
= —VNA Measurement - Z(51,73) 4% ‘ ° Pwrl
€ 102---Simulation - Z(1,3) dl -
= ! A
O f---Simulation - Z(1,9) Pa o Pwr2
© Simulation - Z(1,17) Pwr3
2 [l---Simulation - Z(51,73 & | 59 -
© o Pwr4
8 I I O S L N SN N O 1 S I IR OO 9 ) T .49, 53 57 | 61 NEEN
g' ']0-3 : ; e 5 51 [Sss 59 | 63 B ED
- ___-._...-...- ...-.___-._-... .- .......___ e o L i ; ‘= Ll X 67 71
-~ : @ 13 Power plane stack-up
. - -
and connectivity
-4
10
102 10° 10° 10° 10° 107 —/

Frequency (Hz)
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DUT-VRM: AC Correlation

0 Best and worst cases define the minimum and maximum impedance boundaries caused by
manufacturing variations

0 Measurement results stay within the simulation corner cases along the frequency range

107 - 10° :
—Measurement - Z(1,3) —Measurement - Z(51,73)
---Simulation-Typical Z(1,3) ---Simulation-Typical Z(51,73)
Simulation-Best Z(1,3) _,' Simulation-Best Z(51,73) ;
£ =-= Simulation-Worst Z(1,3) s S Simulation-Worst Z(51,73) Ry
< i . £ 10 3 =
9 _I 9 . J. l' I’
o Transfer impedance © - Transferimpedance i s
g 101 between memory 2 - between DIMM sockets ,.'///
-§ controllers -§ e ‘7
S 2 10 o
£ E L
e
-4
10
107 10° 10°
Frequency (Hz) Frequency (Hz)
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DUT-CAP: AC Correlation

10
O Shorting over five hundred of capacitor pads
dramatically lowers the DUT impedance =
ST o e A
O Self-impedances are in the microohm range S Moh Ao b ar )
[(}] HE
g— —MEAS - Z(1,2)-spara
i — —MEAS - Z(3,4)-spara
Q Trgnsfer impedances are below measurement MEAS - 2(6.10).opara
noise floor (<~10-5; not shown) ~--Simulation-Typical Z(1,2)
===Simulation-Typical Z(3,4)
10_4 Simulation-Typical Z(9,10)
10° 10° 10* 10°

Frequency (Hz)

Self-Impedance at memory controllers
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« AC Simulations/Measurements

— DUT with capacitors
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Capacitor Models

O Measure capacitors U Conversion of S(2,1) to Z(2,1)
. . Z(2 1) _ ZVNA 8(2’1)
O Measure test fixture with shorted pads YT 2 1-5(2))
O De-embed test fixture from capacitor QO Conversion of 2-port to 1-port model
_Z(2)-2Z,
Zde—embedded (2’1) = anpacitor(zil) - Ztestfixture (271) > (1’1) - Z (2,1) + Zo

Test fixture for
ceramic capacitor

Test fixture for bulk
capacitor
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Capacitor Models

Measured Z(2,1) Measured Z(2,1)

0 Measured samples for each type 10' 10°
O Capacitance from the measurement A
12 - measurements
measurements -
£
5 10 L
1000uF 1130uF 1157uF 1194uF - , 7
N \ Y
i Va— / 3
4TuF  52uF  54uF  56UF 10 N \ _/Z /
R e
R .
. = Test Fixture
U Capacitance varies within +/- 4% 10°C e - | ok = ;
10 10 10 10 10 10* 10° 10°
QESR varies within +/- 5% Frequency (Hz) Frequency (Hz)
1000uF bulk 47uF ceramic
capacitors capacitors
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Concatenating Capacitor and PCB Models

O Create PCB model with additional ports for
capacitors

O Added ‘b’ ports at capacitor pads

U ‘a’ ports are observation ports
a n=j+k

U0 Concatenation
0 Commercial tool with a GUI
U0 Manual concatenation using ABCD matrices
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Ports at
memory
ctrls &
DIMM
sockets

S11
1

{

n un
| =
- (B

)

SnP

ﬂ

—

Ports at
memory
ctrls &
DIMM
sockets




PCB + 1000uF Capacitors

U0 Each of 12 bulk capacitor model was 10+
concatenated at each corresponding location _ Non-de
= _de-
6 embedded
O De-embedding test fixture subtracts extra = 1097 capacitor
components N model
= Short wire/braid used for test fixture 103 / '
t (extra R, L components) '
measuremen ' De-embedded
Measurement
O Inconsistent soldering quality may also affect 10 | | | | |
102 103 10 105 108 107 108
Freq (Hz)

Transfer impedance between memory sockets
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PCB + 1000uF + 47uF Capacitors

O Numbered12 bulk capacitor models were

concatenated at their corresponding location 10
O All 40 ceramic capacitors were represented by -
a single model (thus, model variance £ 10° Non-de-
neglected) e embedded
by capacitor
N , model
: : 103 —
O Discrepancies may be due to one or many of
the following factors Measuran Derembedded
= Capacitor model variation (measurement, solder, 104 ’
| | | | |

heat)
= De-embedding method
= Accuracy of AC simulation at low frequencies

102 108 104 10° 108 107 108
Freq (Hz)

Transfer impedance between memory sockets
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Conclusions

« Correlation of simulations and measurements in the sub-milliohm range
« Different techniques used for AC and DC simulations and measurements
« AC measurements using VNA and two-port shunt-thru concepts

« Low frequency accuracy of AC simulations can be improved by fitting to DC simulation
result

« Simulation accuracy can be enhanced by PCB cross-section data
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