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» FElectrical and Thermal Impact of Antiresonance:
= High—Q antiresonance

= Effect of component tolerance
= Components at elevated temperature

» Impedance Flatness and Worst—-Case Transient Noise:
= Target impedance and the reverse pulse technique

=  (Obtaining the PDN step response
=  (Getting the worst—case transient response

= (Conclusions
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High—-Q Antiresonance

V[n001) I[c1) I[c2)

Q=sqrt(Lser1/C2)/Rser=3.16

We want to avoid high—-Q antiresonances in any power

.ac dec 50 1E4 1E7

distribution network
What causes high—Q antiresonance?
. Opposite-signed reactances of any component or

structure

=  Ex1) Capacitor bank: Z, (=sqrt(L/C)) > ESR >

V[n001) I[c1) 1[c2)

antiresonance Q=sqrt(Lser1/C2)iRser=1

.ac dec 50 1E4 1E7

. Ex2) Band limitation of DC-DC converter control loops
» Ex3) PCB plane modal resonance

Component reactance may change because of
= AC, DC bias

] Temperature

o ) Current multiplication due to high—-Q antiresonance can cause
. Initial tolerance, aging additional temperature rise in each capacitor
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Impact of DC Bias on Antiresonance

» Ferromagnetic and ferroelectric materials used

in filter components:

3E-2

625kHz

526kHz

With DC bias
(measured)

E 425kHz J
. . (@]
» Need to consider DC bias and 3
5 9E3 |
2 8E3
temperature 2 7es
. .. 6E-3 A425kHz Without DC bias
= Even under a normal operating condition, the 53 soskiz (measured)
. ) 4E3 625kHz
antiresonance peaks can become noticeably ses
\
. 1E5 1E6 1E7
hlgh L1 Frequency (Hz)
) 0‘5’1‘3' \ Drop significantly due to DC bias
V'"L ¥ ¢ c2 c3 R o -v/
{ ) DC Bias Cel Lel Recl I ce2 Le2 Rc2 I Ce3 Le3 Rc3
N T—180|1 TIXZZUF —Px10uF 1 | 1
12v | . . | [ I [
- ov 167uF 2.7nH 7mOhm i 15.16uFI 2.2nH 4.8m0Ohm 15.6uF I 0.74nH AmOhm
. 1 | I |
|nput fllter Of a DC_DC buck Converter 12v 167uF 2.7nH 7mOhm \ 7.78uF | 1.9nH 4.9mOhm s 5.3uF | 0.77nH SmOhm
Values fitted to the measured impedance
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Simulated Waveforms With and Without DC Bias

No DC bias

625kHz

425kHz

1ES 1EE 1ET

With 12V bias
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425kHz

11c2)

/A
oA

1(C1)=3.9A
1(C2)=3.5A
1(C3)=2.7A

6A

..............

1(C1)=3.4A
1(C2)=3.5A

1(C3)=2.8A

1(C1)=2.4A
1(C2)=3.2A
1(C3)=2.9A

T
3.0ps

4.ll||.ls

0.0ps

T
2.4us  3.2ps

T T
1.2ps 1.8us

1(c2)

1 1
2.4ps 3.0us

I(c3)

................

________________

1(C1)=5.7A
1(C2)=5.7A
1(C3)=2.6A
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1(C1)=5.1A
1(C2)=5.0A

0.8ys 1.6p1s 2l [(C3)=27A

*I(C3): current per piece

1(C1)=5.3A
1(C2)=4.8A

f
0.6ps

T
1.2ps

i
1.8ps

1(C3)=2.9A




Component Tolerance Effect

Impedance (Ohm)

= Considerable spread of actual component values 1

1s expected in a volume production

All Min. + L, Max.

= Capacitance used in large DC bias filter
All Min. + L; Max.

applications usually shows large variations

Typical
(12V bias)

across vendors

= Temperature dependence is specified as only a 1E-2—

Nominal

range

» Statistical impedance profiles including the ' '

1E4 1E5 1E6 1E7
worst—case can be created from the tolerance freq, Hz
t bl Cci Let Rei Ce2 Lc2 Reo Ces Les Res
a € Min. 120uF 2.2nH 4mOhm 2uF 1.5nH |2.5mOhm 2uF 0.6nH |2.5mOhm

Nominal | 180uF 2.7nH 8mOhm 22uF 1.9nH | 5mOhm 20uF 0.77nH | 5mOhm
Max. 200uF 3.2nH | 10mOhm| 30uF 2.3nH |10mOhm | 30uF 0.93nH | 10mOhm

Assumed tolerance range of each component in the DC-DC converter input filter
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Simulated Waveforms Considering Component Tolerances

(*I5: current per piece)

20 Current Flow in Capacitor 1 (180uF) Current Flow in Capacitor 2 (22uF)

——12V DC bias
—— Maximum Lm

Current Flow in Capacitor 3 (10uF)

——12V DC bias | —12V DC bias
—— Maximum Lm 10 —— Maximum LG1
Maximum ch 1 Maximum ch

Maximum ch

~ 10r = . 5f
< < <
& of E g o |
5 ' 5 5
o o (3] /]
" ) ’/U
20+ -10 |
-30 : : : : -5 : :
0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5
Time (sec) «10°° Time (sec) %1078 Time (sec) %108
20 16
1 18 ~
——12V DC bias e / ri4
. . ——Maximum L, L)
» Switching frequency for each LA I y //; \ f2g
. z | c2 ’ A a
= ‘ s F1 '
1E-1— B} ‘E’ 12 ; A % ——ic2
Case Em 7 L 08 e —r— iC3
5 ’ \ g o= #= pcl
9 [/ A 06 %
/AN L

+ 12V DC-bias: 750kHz
* Maximum L;: 1.32MHz

-= pc2

B
6 7 =
7 S\ o
a ‘: \' 0.4 -t D3
2
Q

1E-2—

1 1 S —P———'--_ﬁ 0
i 1E4 1E5S 1E6 1E7 12V bias Max L{C1) Max L(C2)
* Maximum L¢,+ 3.16MHz Impedance of tolerance corner cases Simulated RMS current and dissipated

power in the capacitors
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Temperature Rise in Capacitors

T7 (2” from C1)
= Will more current dissipation heat up the

capacitor more?
T6 (0.5” from C1)

= Thermocouplers are attached to the capacitors
T5 (next to C1)

and PCB as well.

Electrolytic
capacitor

(180uF) » Temperature was measured after sufficient

Ceramic
capacitor
(22uF)

settling time (> 30min).

Ceramic

2 » Test setup had no forced air flow.
» PCB was placed horizontally ~0.5” above the

bench surface.

ciir:ﬂifr ” T = Except for the switching regulator under study,

(10uF x2)

Inductor

all other circuits were disabled.

= Ambient temperature was 20 degC
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50mOhm " impedance magnitude[ohm]
10mOhm Fsw=625kHz
Fsw=525kHz
Fsw=425kHz
5mOhm

100kHz 1MHz 10MHz
Measured impedance at different switching frequencies

» Thermal resistances were expected to be
constant

» Contrary to the expectation, the resulting
thermal resistance changes with different

switching frequencies. Why?

Thermal Resistance

12V bias (*I5: current per piece)

5] 025
ean g
5 o0zo0 @
—_ Segnerettt o ——icl
< 4 )
:— )K.._‘_.” 015 % —— ir2
C Tt o .
g° [y 3 e
010 ddss pcl
é 2 - = P
[ PPPEETTTTEEE 9 2 suifes pr2
1 0.05 g @ pc3
0 0.00
425kHz 525kHz 625kHz
Simulated current and power dissipation in the capacitors
12V bias
500 i — .
_ capar‘.'for aﬂtbleﬂf
] th — ..
g 400 ' Dissipated _Power
t.' = __-____,_.-.
- % 300 / —t—rthl
X = rth2
™ @ 200 =
g A — v rth3
2 100
==
0
425kHz 525kHz 625kHz

Calculated thermal resistance of each
capacitor
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Thermal Consequences

12V bias (*lcs: current per piece)

Electrolytic
capacitor 6 0.25
Measured temperature (°C) (faoutn )
Y o
HEEE z s R
Ceramic 5_‘_4 P 015 ‘I:_d'_ e iC2
capacitor = r0ls m
c1 (22,1;) gs ‘______uﬁ___________‘__._% % e i3
7 6 T5 o) = L 010 @ ..o pa
56.2 55.5 56.3 a S - ¢ 3 e
1 _O'OSE coee pc3
T2 493 51.0 52.2 ceramic ’- 0 0.00
capacitor 425kHz 525kHz 625kHz
(10uFx2) Simulated current and power dissipation in the
= All capacitors heat up to 50~55°C regardless of switching frequencies
T4 54.2 53.0 54.5
»Heat spreads through PCB
T5 582 580 599 »Capacitors are not the only heat dissipating components; Loss from the

nearby power components dominates (e.g. input filter inductor, FETSs, output
T6 443 445 455 .

inductor)
T7 339 344 356 » The ambient temperature needs to account for the local temperature rise caused

by the adjacent power components.
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Outline

» Flectrical and Thermal Impact of Antiresonance:
= High—Q antiresonance

= Effect of component tolerance
=  Components at elevated temperature

» Impedance Flatness and Worst—Case Transient Noise:
= Target impedance and the reverse pulse technique

=  (Obtaining the PDN step response
=  (Getting the worst—case transient response

= (Conclusions
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Target Impedance

Estimates upper bound for rail’s
impedance

= \/oltage fluctuation on rail: AV
= Maximum current step: Al
= Target Impedance: Z 4t = AV/ Al

Valid for linear and time—-invariant
PDN

Approximation unless impedance
strictly resistive

1.E+00

Impedance magnitude [ohm]

1.E-01 +

1.E-02 A

1.E-03

Frequency [HZ]

1.E+02

1.E+04

1.E+06 1.E+08
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Reverse Pulse
Technique (RPT)

RPT finds worst case
transient response to
arbitrary load step

Step Response (V)

Load Step (A)

»> Log Time (s)

» Log Time (s)
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Reverse Pulse
Technique (RPT)

Step Response (V)

At, —

1 t
|‘_'_| &, 7 Log Time (s)

A

Load Step (A)

-
Log Time (s)
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Reverse Pulse

Technique (RPT) |
S :
g | o
: : 4
o ! _1\ —
g | |
o At - | |
_8 ~ } $ > | |
n '<—:— s, 1 Log Time (s) " A _’:
2<: ‘ ]
o
9
3
S

t At,

Log Time (s)
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Reverse Pulse
Technique (RPT) :

S :
3 l >
S : 1A
% ! T i
ks | :
o At o I |
_8 ~ 4 4 > [ |
n '<—:— s, 1 Log Time (s) " A _’:
o : Y
< ! :
o | |
2 | !
-(% :_ At, _>:
S . l !

o Aty At Log Time (s) : : >
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Step Response (V)

Load Step (A)

Reverse Pulse
Technique (RPT)

At, -

1 t
|‘_'_| &, 7 Log Time (s)

A

—

-
Aty At Log Time (s)

Worst-case positive response [V]

V, =V, - Vp +V,————>

At,

Tt=d

Time [sec]

VL ON 2016 JANUARY 19-21,2016
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RPT Measurement Setup

Multiphase DC-DC converter
Medium-speed high-
resolution real—-time

; Gate drive
OSCIHO SCopes frOm two from AWG To DC electronic load

vendors
. Transient Fast Power
The fast power FET driven by load board FET
an arbitrary waveform \

. Converter
generator and a gate driver Packages
circuit
Two-port shunt—thru
measurement with VNA

Socket

Main PCB

2016 JANUARY 19-21,2016
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Measured Step Response

Positive going current Negative going current
1.03
1.028
< 1.026 g
] s
L5 1.024 3
1.022
1.02
15 15
= =
O e e i e e e e I
oy o
2 6 2'0 4'0 5'0 20 0 20 40 60 80

Time (ps) Time (pus)
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RPT Measurement Pitfalls (1)

Response to rising edge and falling edge of excitation step must be

symmetric

11

E : : :

'1_[]4 e e e e il LlITTTITITTTTTIA

1.02 L L L
-5

Time (ps)

—— Rising Fdge s Billing Edge

15

e el e

Time (us)

Rising Edge Falling Edge
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RPT Measurement Pitfalls (2)

Non-linearity of response limits application space (for large—signal
excitations)
Noise and thermal drifts may degrade small-signal responses

Normalized Voltage Transient

1A Load Step
3A Load Step
10A Load Step
30A Load Step
100A Load Step

Due to

1\4&" nonlinearity

Vou (V)

=10 0 10 20 30 40 50
Time (us)

Time (ps) Due to noise &

thermal drifts

Current Load Step 150 Current Load Step

100 f=====+= :. ------- Heeeens s R - 1A Load Step

] : : : 3A Load Step
10A Load Step
30A Load Step
—— 100A Load Step

Tpo (A)
=]
(=] (=]
T1oad (A)
(4]
o

0 10 20 30 40 50
Time (ps)

-10 0 10 20 30 40 50 -10
Time (ps)
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Measurement: Comparison of Edges

Transient responses corresponding to rising and falling edges of load step
compared.

Peak deviation in step Peaks and valleys
/ response: 9mVp / line up in time
1.03 T T T T 104 T
! : : : : 1 : I
! |
1.035F oo | i
|
— | |
= I (-
3 10 T B B —
= ] [ -
I (Y I : : b
'1_[]25_._...._._..i Hri1- .5.____I.____...___...____...___..l____..____..._
1 T |
; : : I T : |
1 1 1
20 3D 40 50 =T T 30 0 50
Time (pus) Time (ps)
m—— Rizing Edge Ealling Edge —— izing Edge Ralling Edge
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Peaks and valleys of step response give timing for edges in excitation
current

1.03

1.028

1.026

s (V)

= 1.024

1.022

50 =10 0 10 20 30 40 50
Time (ps)

] i i i
-10 0 10 20 30
Time (pus)

1.02

Algorithm to generate
worst case excitation
pulse pattern
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Measurement: Worst Case Transient Response

= Worst case transient response generated by Reverse Pulse Technique.
= (Good correlation between measurement and simulation

1.04

response.

Worst-case high-
to-low response.

1.015
-10

i i i i i

550 560 570 580 590 600
Time (ps) Time (ps)

Simulated

Measured

Worst_case _ _____ ________ _________ _________ _______ v .. _
excitation =
pattern. =

0 100 200 300 400 500 500 100 1] 100 200 300 400 500 600 700

. _ Time (ps)
Time (ps) Simulated

Measured
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Measurement: Worst Case Transient Response

= Worst case transient response generated by Reverse Pulse Technique.
= (Good correlation between measurement and simulation

104 ! ! ! ! ! ! 104 . .

Worst-case high-
to-low response.

response. Y A R 1} A
102 e ] 102f

1.015
-10

i i i i i
550 560 570 580 590 600
Time (ps)

Simulated Measured

Worst-case
eXC|tat|On gﬂ Ul U SRS e ) § i | ‘ :

0 100 200 300 400 500 500 100 1] 100 200 Tmi?ﬂ[“s‘ 400 500 600 700

Time (ps)

Simulated Measured
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Measurement: Worst Case Transient Response

= Worst case transient response generated by Reverse Pulse Technique.
= (Good correlation between measurement and simulation

104 ! ! ! ! ! ! 104

response.

Worst-case high-
to-low response.

| |l :

: : : : | 1): :

1.015
-10

i i h
560 570 58

Time (ps)
3\ Worst case peak-to-peak

\/ response: 20.2mVpp

Worst-case
excitation =
pattern. =

ER!

: ‘( ..
-& i i ; ; : : 1'01?00 EJ 1[iJl] 2(;0 360 4[510 Sli]D ﬁ[iJCI 700
0 100 200 300 400 500 600 p
. Time (ps)
Time [{Eh) Simulated Measured
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Shortcoming of Target Impedance Approach

Impedance profile shows low—Q resonant peaks at o T A
30kHz and 300kHz e ?(_)_O_k"'z 3
=  Popular approach approximates worst case 107

peak—to—peak voltage by repetitive excitation
of the resonant peaks

Voltage waveform due to load
pulsed at 30kHz and 300kHz
= 30kHz: 18.5mVpp
(underestimates worst case
noise by 8.4%)
= 300kHz: 16.1mVpp

(underestimates worst case
noise by 20%)

[\ ]easured

Frequency (Hz) ¢

Vi (V)

2016 JANUARY 19-21,2016




Outline

» Flectrical and Thermal Impact of Antiresonance:
= High—Q antiresonance

= Effect of component tolerance
=  Components at elevated temperature

» [Impedance Flatness and Worst—-Case Transient Noise:
= Target impedance and the reverse pulse technique

=  (Obtaining the PDN step response
=  (Getting the worst—case transient response

= (Conclusions
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= Demonstrated causes and consequences of non—flathess of PON impedance profiles.

=|n the thermal design, the ambient temperature needs to consider the local temperature
rise caused by the nearby power components.

= Reverse Pulse Technique can be used for the worst—case transient noise estimation.

= Estimating the noise by tuning a periodical waveform may underestimate the worst—
case noise.
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Thank you!

QUESTIONS?
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