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▪ Spatially motivated resonances occur when the wavelength of 

excitation approaches same order of magnitude as dimensions of 

power plane

▪ Power plane resonant modes in modern system boards often in 10 

MHz – 10 GHz range.

▪ Midfrequency noise from signals, power converters, clocks can excite 

power plane resonances

▪ Often power plane decoupling establish boundary conditions such 

that resonances are moved around frequency

▪ Impact on system integrity at resonant frequency of power 

plane:

▪ Power-to-signal coupling – increases

▪ Signal-to-signal coupling – increases

▪ Power-to-power coupling – increases

Power Plane Resonances
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𝑓 = 1.38GHz

Simulated impedance seen from connector (blue circle) at center of cavity 
composed of power and gnd planes with corresponding resonant modes’ 
spatial plots.
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▪ Terminating power plane (like transmission line) with RC series 

elements to change boundary conditions such that resonance 

cannot be sustained and cavity energy dissipated

▪ Series capacitor prevents DC power loss

▪ On example production board 22 RC termination elements lined 

perimeter of otherwise bare power plane

▪ Termination reduced self-impedance Q’s significantly

▪ Often termination deemed unnecessary in designs leaving open 

the question of to what extent does a power plane resonance 

impact a system?

Power Plane Termination
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Bare power plane terminated on 3 sides by 22 termination R-C 
elements to mitigate power plane resonances.

500MHz
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▪ Power planes can couple to other planes when overlapping (capacitive coupling), or through via-to-via coupling (inductive 

coupling)

▪ In production board, coupled noise seen to carry from aggressor across neighboring plane to victim power plane on other 

side of layer

Power-to-Power Coupling:  Production Board
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Terminated Aggressor PlaneUnterminated Aggressor Plane

Voltage noise distribution across single power layer of production board.  Aggressor plane is highlighted in red and loaded with 1A at 500MHz.  In unterminated case 
the noise sprawl appears across the board at resonant frequency.  In the unterminated case the noise sprawl is comparatively limited. 
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▪ Production board carrier plane (purple) dynamically filled open space on power layers during layout forming primarily capacitive

coupling path from aggressor domain (red) to nearby victim domain (blue)

▪ S21 measurement and simulation between aggressor and victim domains show peak crosstalk at 500MHz, resonant frequency 

of aggressor power plane in unterminated and terminated cases

▪ Termination reduces crosstalk by ~10dB in measurement and ~5dB in simulation

Power-to-Power Coupling:  Nearby Victim
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VDDQ aggressor

12V victim

Unterminated Terminated

Vertical cross section of stackup around power planes of interest.
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▪ Second capacitive coupling path analyzed from aggressor domain (red) to far away victim domain (yellow)

▪ S21 measurement and simulation between aggressor and victim domains again show peak crosstalk at 500MHz, resonant 

frequency of aggressor power plane in unterminated and terminated cases

▪ Termination reduces crosstalk by ~8dB in measurement but does not impact crosstalk simulation

Power-to-Power Coupling:  Far Away Victim
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VDDQ aggressor

3.3V victim

Unterminated Terminated

Vertical cross section of stackup around power planes of interest.
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▪ 3.3V (yellow) –to– 12V (blue) power domain coupling simulated to see if termination of aggressor plane reduces crosstalk 

between unterminated planes

▪ Termination of aggressor plane reduces crosstalk between unterminated planes by 4-5dB in frequency range of interest

Power-to-Power Coupling:  Victim-to-Victim
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12V port3.3V port

Vertical cross section of stackup around power planes of interest.
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▪ In simulation aggressor VDDQ power plane (red) terminated with only MLCCs to compare effect on crosstalk with that of RC 

termination

▪ Low frequency crosstalk reduced significantly compared to RC terminated case

▪ At resonant frequency of aggressor plane midfrequency crosstalk reduced more in RC terminated case compared to MLCC 

terminated case

Power-to-Power Coupling:  MLCC Termination
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12V port3.3V port

VDDQ

Vertical cross section of stackup around power planes of interest.
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▪ Test boards developed to study:

▪ Power domain coupling mechanisms:

▪ Placement of planes

▪ Plane spacing

▪ Vertical overlap

▪ Impact of thin laminates on power domain coupling

▪ Test board design:

▪ 6-layer (3 GND + 3 PWR) 

▪ Stackup designed to analyze vertical and horizontal 

coupling

▪ Several iterations of board constructed with varying 

dielectric thickness between TOP/IN1 and IN4/BOT

▪ 100um, 12um, 8um, 6um, and 3um (from Oak-Mitsui)

Test Boards

19

Test board stackup (left) and probing point/decoupling site mapping (right).

Test board plane layouts of IN1 and IN4 (left) and layout of IN2 (right)

PWR1 PWR2 PWR3

PWR4

PWR5 PWR6
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▪ Goal to study self coupling of power plane from center of plane to edge

▪ First resonance with 100um laminate seen at 𝒇𝟐𝟎 = 𝟏𝟒𝟎𝟎𝑴𝑯𝒛

▪ 40dB reduction in coupling amplitude when reducing laminate thickness from 

100um to 3um

▪ Significant decrease in peak Q coupling amplitude with decrease in laminate 

thickness

▪ Lower frequency resonance:  
𝒇𝟏

𝒇𝟐
∝

𝝐𝟐

𝝐𝟏

▪ Capacitance change proportional to the dielectric constant and inversely proportional to cavity 

height 

▪ Inductance change proportional to laminate thickness

Test Boards:  Self Coupling

20

𝒇𝟐𝟎 = 𝟏𝟒𝟎𝟎𝑴𝑯𝒛

J6

J8
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▪
𝟏

𝑸𝒕𝒐𝒕𝒂𝒍
=

𝟏

𝑸𝒓𝒂𝒅
+

𝟏

𝑸𝒔𝒘
+

𝟏

𝑸𝒄
+

𝟏

𝑸𝒅

▪ Loss due to radiation and surface wave modes negligible because ℎ ≪ 𝜆

▪ Dielectric loss:  𝑄𝑑 =
1

tan𝛿

▪ Conductor loss:  𝑄𝑐 =
ℎ

𝛿
= ℎ 𝜋𝑓𝜇𝜎

▪ Conductor Q increases linearly with laminate thickness

▪ Loss dominated by conductor related losses

▪ Simulated Q less than calculated Q

▪ 𝑄𝑡𝑜𝑡𝑎𝑙,𝑓20 ℎ = 100𝜇𝑚 ~15;𝑄𝑡𝑜𝑡𝑎𝑙,𝑓20 ℎ = 12𝜇𝑚 ~4

Test Boards:  Self Coupling
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𝒇𝟐𝟎 = 𝟏𝟒𝟎𝟎𝑴𝑯𝒛

J6

J8



Information Classification: General

▪ Test board layer IN4 has planes spaced by 127um 

and 1.3mm (just over 10x min spacing)

▪ f20, f02, and f40 have resonance peaks at center of 

planes

▪ Measurements show 5dB coupling difference 

between narrow and wide gap for f20 mode whereas 

simulations show much more sensitivity to changes in 

gap size

▪ Increasing gap reduces coupling

▪ Minimum gaps between planes highly susceptible to 

production variability leading resonances to potentially vary 

unpredictably

Test Boards:  Adjacent Power Nets
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𝑓20

𝑓02

𝑓40
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▪ Test board layer IN1 has planes with minimum gap spacing of 127um and 1.3mm (just 

over 10x min spacing)

▪ IN2 has PWR/GND plane 200um distance from IN1 power plane

▪ Coupling level increases significantly over having adjacent GND planes

▪ Little difference between wide and narrow plane gaps indicating broadside coupling is 

dominant coupling path

▪ In some cases non-adjacent plane coupling greater than or equal to adjacent plane coupling

Test Boards:  Broadside Coupling
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PWR1 PWR2 PWR3

PWR4

PWR5 PWR6

200𝜇𝑚

PWR1 PWR2 PWR3

GND

GND

100𝜇𝑚

No Broadside Coupling

Broadside Coupling

100𝜇𝑚

PWR1 PWR2 PWR3

PWR4

GND

GND

200𝜇𝑚

700𝜇𝑚
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▪ Plane coupling between different planes due to adjacent plane coupling or broadside 

plane coupling decreases with decreasing laminate thickness

▪ 30dB reduction in coupling when reducing laminate thickness from 100um to 12um

▪ Reduction in Q due to reduced laminate thickness

▪ Reduction in resonant frequencies due to higher dielectric constant of thinner 

laminates

Test Boards:  Broadside Coupling
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PWR1 PWR2 PWR3

PWR4

PWR5 PWR6

100𝜇𝑚

PWR1 PWR2 PWR3

PWR4

GND

GND

200𝜇𝑚

700𝜇𝑚
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Test Boards:  Long-Haul Coupling
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▪ Power plane resonances couple across distinct power planes, therefore entire power layer needs to be considered

▪ Considering power planes independently of one another insufficient to predict sustainable resonant modes seen on power planes

▪ Test board IN1 and IN2 (200um separation) see 1.182GHz as f20 resonant mode across entire layer

▪ GND plane on IN2 plays important role as bridge of 1.182GHz resonant mode across board

Normalized energy distribution 
between upper GND and IN1 

PWR plane cavities

Normalized energy 
distribution between IN1 

PWR planes and IN2 
PWR/GND plane cavities

Normalized energy distribution 
between IN2 PWR/GND planes 

and lower GND plane cavities

100𝜇𝑚

PWR1 PWR2 PWR3

PWR4

GND

GND

200𝜇𝑚

700𝜇𝑚

IN1

IN2
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Test Boards:  Long-Haul Coupling
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▪ GND plane on IN2 plays important role as carrier of 1.182GHz resonant mode across board

▪ GND connection defect intentionally added to emulate common behaviors when laying out via stitching:

▪ Missing vias

▪ Regular stitching patter with insufficient spacing

Normalized energy distribution 
between upper GND and IN1 

PWR plane cavities

Normalized energy 
distribution between IN1 

PWR planes and IN2 
PWR/GND plane cavities

Normalized energy distribution 
between IN2 PWR/GND planes 

and lower GND plane cavities

100𝜇𝑚

PWR1 PWR2 PWR3

PWR4

GND

GND

200𝜇𝑚

700𝜇𝑚

IN1

IN2
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▪ RC termination can be used to quite power plane resonances and inter-plane coupling

▪ RC termination of planes can reduce coupling between unterminated planes

▪ Thinner laminates can be used to dampen power plane Q and build immunity to inter-plane coupling

▪ Spacing planes far apart from one another not sufficient for isolation as full cavity resonances can drastically 

increase coupling

▪ Power planes can be vehicle for coupling between domains

▪ Sufficient decoupling, RC termination, and thinner laminates can be used to build resonance immunity and noise immunity from other power domains

▪ GND planes can be vehicle for coupling between domains

▪ Sufficient via stitching necessary to ensure good reference plane behavior and mitigate multi-cavity resonances

Conclusion
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—

QUESTIONS?

Thank you!
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