Simulating Complex PowerGround Plane Shapes with

 Variable-Size Cell SPICE Grids

 Variable-Size Cell SPICE Grids}

Istvan Novak, Jason R. Miller, Eric Blomberg SUN Microsystems, Inc.

One Network Drive, Burlington, MA 01803

Outline

- Uniform, rectangular plane models
- Need for adaptive, non-uniform grids
- Impedance profiles with various cutouts
- Hardware correlation with adaptive grid
- Conclusions

Conductive plane pair with dielectric separation:

Grid subcircuit model:

Irregular Plane Shape with Cutouts

Complex plane shapes

Symmetrical Cutout in Middle (1)

- 1/16" FR4 double-sided 4"x6" rectangular plane pair
- Transfer impedance along shorter side
- Removed copper
- None
- 0.5 "x0.75" rectangular cutout
-1 "x1.5" rectangular cutout
- 2"x3" rectangular cutout
- 3"x5" rectangular cutout

Symmetrical Cutout in Middle (2)

Impedance magnitude [ohm]

Symmetrical Cutout in Middle (3)

Percentage frequency change over percentage copper removed

Frequency of first modal resonance peak

EPEP2002

Symmetrical Slot in Middle (1)

- 1/16" FR4 double-sided 4"x6" rectangular plane pair
- Transfer impedance along shorter side
- Slot in middle, 0.125 " wide
- None
- 0.75 " rectangular cutout
- $1.5^{\prime \prime}$ rectangular cutout
- 3" rectangular cutout
- 4.5" rectangular cutout

Symmetrical Slot in Middle (2)

Impedance magnitude [ohm]

Symmetrical Slot in Middle (3)

Percentage frequency change over percentage copper removed

Frequency of first modal resonance peak

Cut from Side (1)

- 1/16" FR4 double-sided 3"x6" rectangular plane pair
- Transfer impedance along 1" on side
- Cut from side, 0.03 " wide

> - None
> $-0.5 "$ cut
> $-1 "$ cut
> $-2 "$ cut
> $-3 "$ cut
> $-4 "$ cut
> $-5 "$ cut

Cut from Side (2)

Impedance magnitude [ohm]

Cut from Side (3)

Percentage frequency change over percentage copper removed

Frequency of first modal resonance peak

Complex plane shapes

Limitations of Rectangular Uniform Grids

- Many cells may fall outside of shape
- SPICE run-time grows sharply with node numbers
- Unnecessary nodes increase run time
- Cant switch to fine mesh in sensitive areas
- Modal resonances may not be captured correctly

Cell and Diamond Definitions

Grid with Adaptive Sub Gridding

Correlation on Modal Resonances (1)

Example shape from Slide 4:

- Irregular outline
- Cutouts

Correlation on Modal Resonances (2)

Self-impedance at white arrow Uniform grid:

- Overestimates static capacitance
- Overestimates resonance frequencies
Adaptive grid:
- Good correlation

Acknowledgement

Pre-processor SKILL script was written by Roger Cleghorn, Cadence
SPICE equivalent circuits were created by perl code, written by Ken Laird, North Eastern University
Further contributions and support:

- Hemant Shah (Cadence)
- Nick Laplaca (SUN)
- Deborah Foltz (SUN)
- Paul Baker (SUN)
- Paul Sorkin (SUN)

Conclusions

- Odd shapes, cutouts and perforations change
- Static capacitance
- Modal resonances
- Modal resonances do not scale with static capacitance
- Adaptive, non-uniform plane models can
- Allow for finer mesh in critical areas
- Capture modal resonances of odd shapes
- Capture signatures of perforated planes
- Adaptive grid showed good hardware correlation

Correlation on Perforated Plane (1)

$1.8 " x 1.6$ "x0.002" Measured in the middle, front/back Via pair: 20mil drill, 50-mil center-tocenter
TDR source:

- 150psec
- 50 ohm

TDT input:

- 50 ohm

Correlation on Perforated Plane (2)

Adaptive grid captures accurately:

- Plane perforations
- Edge reflections

