Simulating Complex Power-Ground Plane Shapes with Variable-Size Cell SPICE Grids

Istvan Novak, Jason R. Miller, Eric Blomberg
SUN Microsystems, Inc.
One Network Drive, Burlington, MA 01803
Outline

- Uniform, rectangular plane models
- Need for adaptive, non-uniform grids
- Impedance profiles with various cutouts
- Hardware correlation with adaptive grid
- Conclusions
Conductive plane pair with dielectric separation:

Upper conductor

Dielectric material

Lower conductor

Grid subcircuit model:

Subckt: L_line_e

Subckt: L_line_g

X cells

Y cells

Simulation Model for Plane Pairs

(Rectangular and Uniform)
Irregular Plane Shape with Cutouts
Symmetrical Cutout in Middle (1)

- 1/16” FR4 double-sided 4”x6” rectangular plane pair
- Transfer impedance along shorter side
- Removed copper
 - None
 - 0.5”x0.75” rectangular cutout
 - 1”x1.5” rectangular cutout
 - 2”x3” rectangular cutout
 - 3”x5” rectangular cutout
Symmetrical Cutout in Middle (2)

Impedance magnitude [ohm]

Frequency [Hz]

- full
- 0.5x0.75
- 1.0x1.5
- 2.0x3.0
- 3.0x4.5

Complex plane shapes 6
Symmetrical Cutout in Middle (3)

Percentage frequency change over percentage copper removed

0.5”x0.75”
1.0”x1.5”
2.0”x3.0”
3.0”x5.0”

Relative copper area removed [%]

0 10 20 30 40 50 60 70

Frequency of first modal resonance peak

Complex plane shapes 7

EPEP2002
Symmetrical Slot in Middle (1)

- 1/16” FR4 double-sided 4”x6” rectangular plane pair
- Transfer impedance along shorter side
- Slot in middle, 0.125” wide
 - None
 - 0.75” rectangular cutout
 - 1.5” rectangular cutout
 - 3” rectangular cutout
 - 4.5” rectangular cutout
Symmetrical Slot in Middle (2)

Impedance magnitude [ohm]

Frequency [Hz]

Complex plane shapes 9
Symmetrical Slot in Middle (3)

Percentage frequency change over percentage copper removed

Relative copper area removed [%]

0 0.5 1 1.5 2 2.5 3.0" 4.5"

Frequency of first modal resonance peak

Complex plane shapes

EPEP2002
Cut from Side (1)

- 1/16” FR4 double-sided 3”x6” rectangular plane pair
- Transfer impedance along 1” on side
- Cut from side, 0.03” wide
 - None
 - 0.5” cut
 - 1” cut
 - 2” cut
 - 3” cut
 - 4” cut
 - 5” cut
Cut from Side (2)

Impedance magnitude [ohm]

Frequency [Hz]

- full
- 0.5" cut
- 1" cut
- 2" cut
- 3" cut
- 4" cut
- 5" cut

Complex plane shapes 12

EPEP2002
Cut from Side (3)

Percentage frequency change over percentage copper removed

<table>
<thead>
<tr>
<th>Relative copper area removed [%]</th>
<th>0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency of first modal resonance peak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complex plane shapes 13
Limitations of Rectangular Uniform Grids

- Many cells may fall outside of shape
- SPICE run-time grows sharply with node numbers
 - Unnecessary nodes increase run time
 - Cant switch to fine mesh in sensitive areas
- Modal resonances may not be captured correctly
Cell and Diamond Definitions

Node
Cell
Segment

Diamond

Diamond1
Diamond2
Diamond3
Diamond4

F_{upper}
F_{lower}
F_{pair}

Complex plane shapes 15

EPEP2002
Definitions of Example Shape

Complex plane shapes 16
EPEP2002
Grid with Adaptive Sub Gridding
Correlation on Modal Resonances (1)

Example shape from Slide 4:
- Irregular outline
- Cutouts
Correlation on Modal Resonances (2)

Self-impedance at white arrow

Uniform grid:
- Overestimates static capacitance
- Overestimates resonance frequencies

Adaptive grid:
- Good correlation

Impedance measured, simulated: adaptive grid and simulated: fixed grid [ohm]

Fixed uniform grid

Measured

Adaptive grid

Frequency [Hz]

1.E+07 1.E+08 1.E+09
Acknowledgement

Pre-processor SKILL script was written by Roger Cleghorn, Cadence

SPICE equivalent circuits were created by perl code, written by Ken Laird, North Eastern University

Further contributions and support:

• Hemant Shah (Cadence)
• Nick Laplaca (SUN)
• Deborah Foltz (SUN)
• Paul Baker (SUN)
• Paul Sorkin (SUN)
Conclusions

• Odd shapes, cutouts and perforations change
 – Static capacitance
 – Modal resonances

• Modal resonances do not scale with static capacitance

• Adaptive, non-uniform plane models can
 – Allow for finer mesh in critical areas
 – Capture modal resonances of odd shapes
 – Capture signatures of perforated planes

• Adaptive grid showed good hardware correlation
Correlation on Perforated Plane (1)

1.8”x1.6”x0.002”
Measured in the middle, front/back
Via pair: 20mil drill, 50-mil center-to-center
TDR source:
• 150psec
• 50 ohm
TDT input:
• 50 ohm
Correlation on Perforated Plane (2)

Adaptive grid captures accurately:

- Plane perforations
- Edge reflections